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a b s t r a c t

Experimental and simulation uncertainties have not been included in many of the statistics used in
assessing agricultural model performance. The objectives of this study were to develop an F-test that can
be used to evaluate model performance considering experimental and simulation uncertainties, and
identify the best datasets to use for model calibration using different water stress functions in a cropping
system model. Data on irrigated maize in Colorado, USA, and the Root Zone Water Quality Model
(RZWQM) were used as an example to demonstrate model calibration using the modified F-test along
with other commonly used statistics. Compared to the d-index, the F-test provided a statistical test under
a certain confidence level that better distinguished the goodness of model prediction for both biomass
and yield while considering uncertainty. To obtain robust model parameters, we recommend using
multiple treatments across multiple years for model calibration, regardless of water stress functions
used.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Very few statistics are satisfactory in determining the goodness
of model fit in calibration and prediction, and model users seem to
tolerate a large simulation error in agriculture because of consid-
erable experimental uncertainties in field research (Ritter and
Mu~noz-Carpena, 2013). The most commonly used statistical met-
rics for agricultural models are coefficient of determination (r2),
root mean squared error (RMSE), relative error (RE), Nash-Sutcliffe
model efficiency (NSE), and index of agreement (d-index), in
addition to graphical visualization (Ma et al., 2011; Krause et al.,
2005; Whitmore, 1991). However, these statistics do not consider
either experimental and simulation uncertainties. Therefore, it may
be erroneous or subjective to use these statistics in judging the
performance of a model using these statistics based on the criteria
suggested by Moriasi et al. (2007). Ritter and Mu~noz-Carpena
(2013) used bootstrapping to create empirical probability distri-
butions of RMSE and NSE so that significance of RMSE and NSE in
Collins, CO, 80523-1170, USA.
. Andales).
relation to their respective threshold could be tested, but they still
did not consider experimental nor simulation uncertainties. In
addition, the significance was referring to RMSE and NSE, not to the
experimental nor simulation data.

To account for experimental (measurement) uncertainties,
Harmel and Smith (2007) introduced a correction factor (CF) for
calculating the differences between simulated and observed values
in their statistics. They found that model performance (d-index)
was improved after considering experimental uncertainty. In a later
study, Harmel et al. (2010) further improved the d-index by
incorporating both experimental and simulation uncertainties.
Harmel et al. (2014) stated that it was critically important to include
both measured data and simulation uncertainty in interpreting and
communicating model results. Yen et al. (2014) developed an in-
tegrated parameter estimation and uncertainty analysis tool
(IPEAT) that considered uncertainties due to input data, model
parameters, model structure, and calibration/validation data, using
the correction factor (CF) of Harmel and Smith (2007) for the Nash-
Sutcliffe model efficiency. They found that the calibrated model, by
considering three or more uncertainties, was more robust than that
without considering any uncertainty in model parameterization.
However, in a later study, Yen et al. (2016) found that including
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measurement uncertainty in calibration datasets would not
significantly affect model calibration unless the uncertainty is
greater than 50%.

However, most statistics used in model comparisons are relative
and there is no test of significance between model performances.
For example, Saseendran et al. (2014) compared three water stress
functions in the Root Zone Water Quality Model (RZWQM) using
the RMSE and d-index. They found that the two modified water
stress functions based on the Nimah-Hanks water uptake or canopy
heating effects provided better predictions of maize yield, biomass,
leaf area index, and soil water content using data from three lo-
cations in Colorado than the original water uptake function in the
CERES-Maize model. In another study, Fensterseifer et al. (2017)
used relative RMSE as a criterion to evaluate the number of data-
sets needed to calibrate the CROPGRO-soybean model using 21
datasets from eight locations in Southern Brazil. They found that
two datasets from each location are needed for model calibration.
However, both studies used trial-and-error in model calibration,
and the calibrated parameters may not be rigorous in addition to
the subjectivity of the statistics used. Ma et al. (2012a) and
Kersebaum et al. (2008) used a Lack-of-Fit (an F-test) to calculate
the significance of model predictions when experimental un-
certainties existed, based on the study of Whitmore (1991). They
found that the F-test could be more rigorous than the ranges of
indicators proposed by Moriasi et al. (2007). The objectives of this
study were to: (1) develop an F-test for evaluating model perfor-
mance by including both experimental and simulation un-
certainties, (2) compare model performance using various water
stress functions in RZWQM, and (3) identify the best datasets for
model calibration. A published dataset on irrigated maize in Colo-
rado, USA, and the Root Zone Water Quality Model (RZWQM) were
used as an example to demonstrate the modified F-test along with
three commonly used statistics: the d-index, RMSE, and r2. Since
the modeling results were published in previous papers (Ma et al.,
2012b, 2016; Saseendran et al., 2014), our emphasis was on quan-
tifying the model performance by applying the newly modified F-
test, rather than analyzing the causes of modeling deficiency from
the underlying biophysical processes in the model.

2. Materials and methods

2.1. Experimental dataset and model simulation

The field experimental data were obtained from a study con-
ducted from 2008 to 2011 near Greeley, Colorado, USA (40.45� N,
104.64� W). The soil is a sandy loam and is fairly uniform
throughout the 200 cm soil profile. Six irrigation treatments (mi-
cro-irrigation with surface drip tubing adjacent to each row) with
four replicates were designed to meet a specified percentage of
potential crop evapotranspiration (ET) requirements (Allen et al.,
1998, 2005) during the growing seasons: 100% (T1), 85% (T2), 75%
(T3), 70% (T4), 55% (T5) and 40% (T6) of potential crop ET. The
amount of water for each treatment was estimated at a 3e6 day
interval based on reference ET demand, crop coefficient, rainfall,
and soil water deficit. The T1 treatment was irrigated such that
water availability (irrigation plus precipitation plus stored soil
water) was adequate tomeet cropwater requirements, as predicted
by the reference evapotranspiration and crop coefficients (FAO-56
methodology, Allen et al., 1998). The remaining treatments were
irrigated to meet a certain percentage of water demand in T1.

Maize cv. Dekalb 52e59was planted at an average rate of 81,000
seeds per hectare with 0.76m row spacing in early May from 2008
to 2011. A detailed description of the experiment is provided by Ma
et al. (2012b), and the experimental dataset and detailed method-
ology can also be found at US Department of Agriculture National
Agricultural Library Ag Data Commons (Trout and Bausch, 2017).
The Root Zone Water Quality Model (RZWQM) is a compre-

hensive agricultural system model and has process-level simula-
tions of soil water, soil temperature, plant growth, pesticide fate,
and soil C and N dynamics as influenced by various agricultural
management practices (Ahuja et al., 2000). The DSSAT 4.0 crop
models (e.g., CERES-Maize and CERES-Wheat models) incorporated
in RZWQM can be used to simulate crop growth, water use, and N
uptake, where RZWQM provides soil water, soil temperature, and
nutrient information for DSSAT4.0 crop models (Ma et al., 2006).

In RZWQM, there are three water stress functions users can
select. The first is from the DSSAT model that is defined as the ratio
of potential root water uptake (TRWUP) to potential plant transpi-
ration (EPo) (Ritchie, 1998), referred hereafter as default water
stress function (WSF1, Saseendran et al., 2014).

WSF1 ¼ TRWUP
EPO

(1)

The simplified close-form equation of (Ritchie, 1998) used to
calculate the TRWUP in Eq. (1) is:

TRWUP ¼
XN
i¼1

k1*ek2*ðSWðiÞ�LLðiÞÞ

k3� lnðRLVðiÞÞ *RLVðiÞ*DZðiÞ (2)

where, RLV(i) is root length density in soil layer i (cm cm�3);
k1¼0.00132, k2¼ 45.0 if the drained lower limit (LL) of soil water
(permanent wilting point or soil water content at 1.5MPa suction)
in the soil layer is greater than 0.30 cm3 cm�3 and k2¼130 LL(L), if
LL for the soil layer is less than 0.30 cm3 cm�3; k3¼7.01; SW(i) and
LL(i) are, respectively, volumetric soil water content and lower limit
of plant available water in layer i (cm cm�1); Z(i) is soil depth of
layer i (cm).

The secondwater stress function (WSF2) estimates TRWUP from
the Nimah-Hanks equation (Nimah and Hanks, 1973). The root
water uptake part of the sink term, Sr (z, t) (cm hr�1), is computed
using the Nimah and Hanks (1973) equation:

TRWUPNH ¼
XN
i¼1

Srðzi; tÞ

¼
XN
i¼1

½Hr þ ðRrziÞ � hðzi; tÞ � sðzi; tÞ �RðziÞKiðqÞ
DxDzi

Dzi

(3)

where, q¼ volumetric soil water content (cm3 cm�3); t¼ time (hr);
zi¼ soil depth (cm, assumed positive downward); h¼ soil-water
pressure head (cm); Ki(q)¼ unsaturated hydraulic conductivity (cm
hr�1), a function of h and z; Hr¼ an effective root water pressure
head (cm); Rr¼ a root resistance term and the product (Rr zi) ac-
counts for gravity term and friction loss in Hr (assumed¼ 1.05);
s(zi,t)¼ the osmotic pressure head (assumed¼ 0 cm); Dx¼ the
distance from plant roots to where h(zi,t) is measured
(assumed¼ 1 cm); Dz¼ soil depth increment (cm); R(zi)¼ pro-
portion of the total root activity in the depth increment Dzi, ob-
tained from the plant growth model. The total potential uptake
(TRWUPNH) is calculated from summation of Eq. (3) with Hr set
equal to �1.5MPa as the permanent wilting point, which may be
modified by users according to crop species. Thus,

WSF2 ¼ TRWUPNH
EPO

(4)

The third water stress function considers water stress due to
heating of the canopy by the latent heat energy partitioned to
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potential soil evaporation but not used in soil evaporationwhen the
surface soil water content is limiting. Therefore, we explored
including stress due to additional canopy heating in calculation of
the water stress functions by changing their formulation as
described below by including actual soil evaporation (ES) for the
day in the numerator and using total evapotranspiration (ET) in the
denominator.

WSF3 ¼ TRWUPNH þ ES
ET

(5)

With measured soil properties shown in Table 1, an automated
optimization and parameter estimation software (PEST, Doherty,
2010; Ma et al., 2012a, 2016) in RZWQM was used to calibrate
crop cultivar parameters (Tables 2 and 3). The six irrigation treat-
ments with four replicates carried out from 2008 to 2011 were used
for selecting subsets of observed data to be used for model cali-
bration. To investigate the effect of different measured datasets on
optimizing crop cultivar parameters and crop growth outputs,
RZWQM was first calibrated either using sub-datasets from one
treatment of multiple years (Trt-1, Trt-2, Trt-3, Trt-4, Trt-5, and Trt-
6) or from multiple treatments of one year (Year-2008, Year-2009,
Year-2010, and Year-2011), or all the treatments and the years.
The calibrated cultivar parameters were then used to simulate all
the datasets and statistics were computed from all the datasets
simulated with each set of cultivar parameters. Detailed informa-
tion onmodel calibration using PEST in RZWQM can be found inMa
et al. (2012a).

The three water stress functions have been modeled and
comparedwith the same data above by Saseendran et al. (2014) and
we are using it again here to re-evaluate the performance of the
WSFs based on the modified F-test below. Different from
Saseendran et al. (2014), the PEST was implemented to derive crop
parameters, rather than by trial-and-error.
2.2. Modified F-test with experimental and simulation uncertanity

For convenience, we first define the following symbols:

L¼ number of experimental or measurement groups. The
groupsmay represent different treatments or different sampling
dates.
Ni¼ number of measured replicates for the ith experimental or
measurement group
Mi¼ number of prediction replicates for the ith experimental or
measurement group
Oij¼ jth observation (replicate) for the ith measurement group
(Oij¼ miþεij and E[Oij]¼ mi)
Pik¼ kth predicted value (replicate) for the ith measurement
group (Pik¼ liþdik and E[Pik]¼ li)
li¼ true mean of predictions for the ith experimental or mea-
surement group
mi¼ true mean of observations for the ith experimental or
measurement group
Table 1
Soil parameters and range of cultivar parameters for PEST optimization (Ma et al., 2016)

Soil depth (cm) Soil bulk density (g/cm3) Saturated soil wa

0e15 1.492 0.437
15e45 1.492 0.437
45e75 1.492 0.437
75e105 1.568 0.408
105e135 1.568 0.408
130e165 1.617 0.390
160e190 1.617 0.390
Pi ¼ 1
Mi

PMi
k¼1Pik ¼mean of prediction for the ith experimental or

measurement group based on a simulation model. Pi is inde-
pendent of Oij.
Oi ¼ 1

Ni

PNi
j¼1Oij ¼mean of the ith experimental or measurement

group
D2
i ¼ 1

Mi�1
PMi

k¼1ðPik � PiÞ2 ¼ prediction variance of ith experi-
mental or measurement group
S2i ¼ 1

Ni�1
PNi

j¼1ðOij � OiÞ2 ¼ sample variance of ith experi-
mental or measurement group

When there is no simulation uncertainty, for an experiment
with N experimental or measurement groups and Ki replicates in
each group, total sum of squared prediction errors (TSS) may be
written as (Ma et al., 2012a):

TSS ¼
XL
i¼1

XNi

j¼1

�
Pi � Oij

�2 (6)

which can be rearranged as:

TSS ¼ PL
i¼1

PNi

j¼1

�ðPi � OiÞ þ
�
Oi � Oij

��2
¼ PL

i¼1

PNi

j¼1
ðPi � OiÞ2 þ

XL
i¼1

XNi

j¼1

�
Oij � Oi

�2

¼ PL
i¼1

NiðPi � OiÞ2 þ
XL
i¼1

XNi

j¼1

�
Oij � Oi

�2
¼ LOFIT þ SSE

(7)

Where LOFIT is the sum of squared errors between predicted
and observed mean values (due to lack of fit) and SSE is the sum of
squared error due to experimental error (εij). SSE may be rewritten
as (Wackerly et al., 2008):

LOFIT ¼
XL
i¼1

NiðPi � OiÞ2 (8)

and

SSE ¼
XL
i¼1

XNi

j¼1

�
Oij � Oi

�2 ¼
XL
i¼1

ðNi � 1ÞS2i (9)

The mean LOFIT (MSLOFIT) and mean SSE (MSE) are defined as:

MSLOFIT ¼ LOFITPL
i¼1

Ni

;

and MSE ¼ SSEPL
i¼1

ðNi � 1Þ
¼

PL
i¼1

ðNi � 1ÞS2i
PL
i¼1

ðNi � 1Þ

(10)
.

ter content (cm3/cm3) Measured averaged field capacity (cm3/cm3)

0.258
0.239
0.211
0.185
0.182
0.183
0.209



Table 2
Optimized crop parameters fitted for one treatment across four years. WSF1, WSF2, and WSF3 are water stress functions (WSF) used in RZWQM. CV is coefficient of variation.

Parameter Name and (Ranges, initial values) for
PEST optimization

WSF CV Parameter values fitted from each treatment across 4 years

Trt-1 Trt-2 Trt-3 Trt-4 Trt-5 Trt-6 Trt-All

P1 - Degree days (base temperature of 8 �C)
from seedling emergence to end of juvenile
phase (thermal degree days) (100e450, 250).

WSF1 0.081 237.5 277.3 262.8 239.4 225.9 227.0 263.9
WSF2 0.027 240.6 250.5 253.6 255.1 248.3 261.8 247.2
WSF3 0.020 260.7 259.8 250.3 251.9 248.7 252.3 248.2

P2 - Day length sensitivity coefficient [the
extent (days) that development is delayed for
each hour increase in photoperiod above the
longest photoperiod (12.5 h) at which
development proceeds at maximum rate] (0
e1, 0.2).

WSF1 0.981 0.19 0.01 0.54 0.11 0.179 0.86 0.22
WSF2 0.954 0.21 0.19 0.21 0.16 0.07 0.83 0.19
WSF3 0.524 0.04 0.23 0.19 0.18 0.23 0.04 0.20

P5 - Degree days (base temperature of 8 �C)
from silking to physiological maturity
(thermal degree days) (500e1000, 600)

WSF1 0.153 697.8 688.2 717.7 974.0 755.2 611.3 725.0
WSF2 0.122 757.4 701.9 684.4 725.8 671.9 500.0 681.3
WSF3 0.066 692.9 683.2 696.9 699.3 672.9 573.6 688.5

G2 - Potential kernel number per plant (440
e1000, 900)

WSF1 0.298 972.8 1000.0 598.5 1000.0 922.0 472.6 554.3
WSF2 0.227 953.0 991.8 963.8 885.2 762.8 451.8 975.4
WSF3 0.073 979.8 946.5 967.4 803.0 1000.0 1000.0 924.3

G3 - Potential kernel growth rate (mg/(kernel d)
(5e16, 6)

WSF1 0.374 6.45 6.72 10.10 5.42 7.66 15.01 10.42
WSF2 0.456 6.05 6.34 6.34 6.25 7.14 15.71 6.35
WSF3 0.081 6.32 6.82 6.55 7.44 5.69 6.53 6.80

PHINT - Degree days required for a leaf tip to
emerge (thermal degree days) (38e55, 50)

WSF1 0.105 48.1 45.9 44.7 38.0 50.3 38.5 42.5
WSF2 0.035 49.4 48.5 51.8 50.8 50.5 53.9 51.6
WSF3 0.028 49.3 51.1 50.1 48.7 52.8 51.9 51.0
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Therefore, an F-test statistic can be constructed as (Whitmore,
1991; Kersebaum et al., 2008):

F1 ¼ MSLOFIT
MSE

(11)

with degrees of freedom of n1¼
PL

i¼1Ni for the numerator and
n2¼

PL
i¼1ðNi � 1Þ for the denominator. To test whether model

predictions Pi correctly estimate the true mean of the observations
for the ith experimental or measurement group, the hypothesis
would be:

Ho: Pi¼ mi for all i
Ha: Pismi for at least one i

The rejection of Ho would indicate a ‘lack of fit’ of the
Table 3
Optimized crop parameters fitted for all treatments in one year. WSF1, WSF2, and WSF3

Parameter Name and (Ranges, initial values) for
PEST optimization

WSF CV

P1 - Degree days (base temperature of 8 �C)
from seedling emergence to end of juvenile
phase (thermal degree days). (100e450, 250)

WSF1 0.122
WSF2 0.143
WSF3 0.155

P2 - Day length sensitivity coefficient [the
extent (days) that development is delayed for
each hour increase in photoperiod above the
longest photoperiod (12.5 h) at which
development proceeds at maximum rate]. (0
e1, 0.2)

WSF1 0.339
WSF2 0.728
WSF3 0.741

P5 - Degree days (base temperature of 8 �C)
from silking to physiological maturity
(thermal degree days) (500e1000, 600)

WSF1 0.291
WSF2 0.206
WSF3 0.089

G2 - Potential kernel number per plant (440
e1000, 900)

WSF1 0.412
WSF2 0.019
WSF3 0.106

G3 - Potential kernel growth rate (mg/(kernel d)
(5e16, 6)

WSF1 0.365
WSF2 0.114
WSF3 0.227

PHINT - Degree days required for a leaf tip to
emerge (thermal degree days) (38e55, 50)

WSF1 0.187
WSF2 0.112
WSF3 0.069
simulations with respect to the true experimental means. At a given
level of significance (e.g., a level), a critical Fa,n1,n2 value can be used
to test the acceptability of the null hypothesis. In this study, n1¼96
and n2¼ 72 as Ni¼ 4 and L¼ 24.

When there is both experimental and simulation uncertainties,
for an experiment with L experimental or measurement groups, Ni
measurement replicates in each group, and Mi predictions in each
group, total sum of squared prediction errors (TSS) may be written
as:

TSS ¼
XL
i¼1

XNi

j¼1

XMi

k¼1

�
Pik � Oij

�2 (12)
are water stress functions (WSF) used in RZWQM. CV is coefficient of variation.

Parameters fitted from all treatments in each year

Year-2008 Year-2009 Year-2010 Year-2011

307.8 236.8 244.4 275.0
255.6 257.5 203.2 197.3
275.7 253.0 190.3 226.8
0.38 0.26 0.27 0.52
0.22 0.19 0.02 0.38
0.17 0.20 0.10 0.51

1000.0 591.8 568.6 629.7
650.6 537.9 842.7 831.7
645.5 591.2 707.8 587.8
459.9 971.8 470.5 989.8
984.6 954.6 984.4 1000.0
765.4 942.8 751.6 820.2
13.31 6.08 16.00 16.00
5.90 6.35 5.05 5.09
8.22 6.37 8.04 10.97
39.5 39.6 55.0 38.0
43.9 50.4 55.0 44.0
48.0 47.9 55.0 52.7
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Which can be rearranged as:
TSS ¼ PL
i¼1

PNi

j¼1

PMi

k¼1

�ðPik � PiÞ þ ðPi � OiÞ þ
�
Oi � Oij

��2
¼ PL

i¼1

PNi

j¼1

PMi

k¼1
ðPi � OiÞ2 þ

XL
i¼1

XNi

j¼1

XMi

k¼1

ðPik � PiÞ2 þ
XL
i¼1

XNi

j¼1

XMi

k¼1

�
Oi � Oij

�2

¼ PL
i¼1

MiNiðPi � OiÞ2 þ
XL
i¼1

Ni

XMi

k¼1

ðPik � PiÞ2 þ
XL
i¼1

Mi

XNi

j¼1

�
Oi � Oij

�2
¼ LOFIT þ SSP þ SSE

(13)
Where LOFIT is the sum of squared errors between predicted
and observed mean values (due to lack of fit), SSE is the sum of
squared error due to experimental uncertainty (εik), and SSP is the
sum of squared error due to prediction uncertainty (dij). SSP and SSE
may be rewritten as (Wackerly et al., 2008):

SSP ¼
XL
i¼1

Ni

XMi

k¼1

ðPik � PiÞ2 ¼
XL
i¼1

NiðMi � 1ÞD2
i (14)

SSE ¼
XL
i¼1

Mi

XNi

j¼1

�
Oi � Oij

�2 ¼
XL
i¼1

MiðNi � 1ÞS2i (15)

The mean LOFIT (MSLOFIT) and mean (SSPþSSE) (MSPE) are
defined as:

MSLOFIT ¼ LOFITPL
i¼1

MiNi

;

and

MSPE ¼

PL
i¼1

NiðMi � 1ÞD2
i

PL
i¼1

NiðMi � 1Þ
þ

PL
i¼1

MiðNi � 1ÞS2i
PL
i¼1

MiðNi � 1Þ

(16)

Therefore, an F-test statistic can be constructed as (Whitmore,
1991; Kersebaum et al., 2008):

F2 ¼ MSLOFIT
MSPE

(17)

with degrees of freedom of n1¼
PL

i¼1MiNi for the numerator and
n2¼

PL
i¼1NiðMi � 1Þ þPL

i¼1MiðNi � 1Þ for the denominator. To test
whether model predictions li correctly estimate the true mean of
the observations for the ith experimental or measurement group,
the hypothesis would be:

Ho: li¼ mi for all i
Ha: lismi for at least one i

The rejection of Ho would indicate a ‘lack of fit’ of the simula-
tions with respect to the true experimental means. At a given level
of significance (e.g., a level), a critical Fa,n1,n2 value can be used to
test the acceptability of the null hypothesis. If the calculated F value
does not exceed the critical F value, the null hypothesis is accepted.
Otherwise, the null hypothesis is rejected, indicating a ‘Lack of Fit’
of the simulation results to the observed means. Since the critical
value of Fa,n1,n2 increases with decreasing a level at the same de-
grees of freedoms (n1¼384 and n2¼ 576 when Mi¼Ni¼ 4 and
L¼ 24 in this study), the null hypothesis may be rejected more
easily at high a level.
2.3. Modified d-index considering experimental and simulation
uncertainty

Willmott (1981) introduced an index of agreement (d-index):

d ¼ 1�

PL
i¼1

ðOi � PiÞ2

PL
i¼1

���Pi � Oavg
��þ ��Oi � Oavg

���2 (18)

To take into account the uncertainty of measured data used for
calibration and evaluation, Harmel and Smith (2007) introduced a
correction factor (CF) to modify the numerator in the above
equation:

d1 ¼ 1�

PL
i¼1

h
CFðmeasÞi

0:5 ðOi � PiÞ
i2

PL
i¼1

���Pi � Oavg
��þ ��Oi � Oavg

���2 (19)

For a normal distribution of experimental uncertainty, CF(meas)i
ranges from 0 for Oi¼ Pi to 0.5 when Pi is 3.9 standard deviation
away from Oi (Harmel and Smith, 2007).

When there are uncertainties in both experimental and simu-
lation results, a new CF function is introduced (Harmel et al., 2010)
and a d2-index is defined as:

d2 ¼ 1�

PL
i¼1

�
CFðmeasþ predÞiðOi � PiÞ

�2
PL
i¼1

���Pi � Oavg
��þ ��Oi � Oavg

���2 (20)

where CF(measþpred)i¼ 1 - DOi , DOi is the degree of overlap for
distributions for eachmeasured (Oi) and predicted (Pi) pair (Harmel
et al., 2010), and Oavg is the mean of measured values.
2.4. Other statistics

In addition to the modified F-test and d-index, two other most
commonly used simple statistics are relative Root Mean Squared
Error (RRMSE) and coefficient of determination (r2), which are:



Table 4
F-test, d-index, RRMSE (%), and r2 for predicting biomass for the threewater stress functions with simulation CV of 0.075 for one treatment across four years. WSF1, WSF2, and
WSF3 are water stress functions (WSF) used in RZWQM. CV is coefficient of variation. For each treatment (Trt-1 to Trt-6), L¼ 4 and Ni¼ 4; for Trt-All, L¼ 24, Ni¼ 4.

WSF Calibration
Treatment

d-index r2 RRMSE Experimental Uncertainty only Experimental and Simulation Uncertainty

d1-index F1-value p-value d2-index F2-value p-value

WSF1 Trt-1 0.738 0.915 11.43 0.782 1.848 0.0034 0.911 0.961 0.66
Trt-2 0.813 0.876 8.49 0.855 1.020 0.47 0.957 0.492 1.00
Trt-3 0.824 0.884 8.00 0.864 0.906 0.67 0.965 0.432 1.00
Trt-4 0.805 0.866 10.20 0.842 1.472 0.043 0.935 0.722 1.00
Trt-5 0.801 0.926 9.57 0.844 1.296 0.12 0.939 0.656 1.00
Trt-6 0.864 0.903 7.07 0.890 0.708 0.94 0.978 0.335 1.00
Trt-All 0.846 0.911 7.05 0.889 0.704 0.95 0.971 0.338 1.00

WSF2 Trt-1 0.764 0.872 9.42 0.808 1.256 0.15 0.941 0.588 1.00
Trt-2 0.755 0.874 10.23 0.792 1.480 0.041 0.928 0.683 1.00
Trt-3 0.750 0.860 10.21 0.794 1.474 0.042 0.920 0.690 1.00
Trt-4 0.735 0.835 10.54 0.777 1.572 0.022 0.919 0.736 1.00
Trt-5 0.776 0.914 8.90 0.821 1.122 0.305 0.940 0.548 1.00
Trt-6 0.712 0.802 11.44 0.755 1.851 0.0033 0.891 0.885 0.90
Trt-All 0.781 0.893 8.91 0.825 1.122 0.305 0.941 0.534 1.00

WSF3 Trt-1 0.751 0.826 10.27 0.795 1.494 0.037 0.935 0.690 1.00
Trt-2 0.748 0.831 10.59 0.790 1.587 0.020 0.927 0.731 1.00
Trt-3 0.768 0.856 9.56 0.816 1.293 0.13 0.939 0.603 1.00
Trt-4 0.784 0.883 8.88 0.830 1.115 0.31 0.943 0.526 1.00
Trt-5 0.794 0.911 8.54 0.839 1.031 0.44 0.944 0.509 1.00
Trt-6 0.729 0.861 10.47 0.781 1.550 0.026 0.912 0.768 1.00
Trt-All 0.795 0.884 8.46 0.841 1.011 0.48 0.949 0.481 1.00
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RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
PL
i¼1

ðPi � OiÞ2
s

1
L
PL
i¼1

Oi

(21)

r2 ¼

" PL
i¼1

�
Oi � Oavg

��
Pi � Pavg

�#2

PL
i¼1

�
Oi � Oavg

�2 PL
i¼1

�
Pi � Pavg

�2 (22)

Where Oavg ¼ 1
L
PL

i¼1Oi and Pavg ¼ 1
L
PL

i¼1Pi
Among these statistics, only the F-test is a statistical test for
Table 5
F-test, d-index, RRMSE (%), and r2 for predicting yield for the three water stress function
WSF3 are water stress functions (WSF) used in RZWQM. CV is coefficient of variation. Fo

WSF Calibration
Treatment

d-index r2 RRMSE Exp

d1-index

WSF1 Trt-1 0.755 0.849 13.52 0.787
Trt-2 0.881 0.943 7.85 0.913
Trt-3 0.880 0.943 7.69 0.914
Trt-4 0.817 0.869 12.92 0.843
Trt-5 0.811 0.936 12.15 0.838
Trt-6 0.772 0.810 12.25 0.806
Trt-All 0.880 0.954 6.45 0.916

WSF2 Trt-1 0.826 0.939 8.90 0.874
Trt-2 0.807 0.959 9.27 0.855
Trt-3 0.824 0.936 8.80 0.867
Trt-4 0.802 0.893 9.37 0.843
Trt-5 0.731 0.849 12.87 0.768
Trt-6 0.602 0.762 17.76 0.645
Trt-All 0.854 0.938 7.53 0.894

WSF3 Trt-1 0.835 0.907 8.60 0.875
Trt-2 0.814 0.936 9.57 0.850
Trt-3 0.846 0.948 8.26 0.884
Trt-4 0.865 0.946 7.10 0.905
Trt-5 0.754 0.862 12.24 0.791
Trt-6 0.685 0.639 17.64 0.720
Trt-All 0.867 0.942 6.96 0.907
significance. The d-index, RRMSE, and r2 are only numerical values
and used for relative comparison among various model runs. Their
implication for model performance is relative and is subject to
interpretation. We selected the d-index to compare with the
modified F-test because of the inclusion of experimental and
simulation uncertainty as developed by Harmel and Smith (2007)
and Harmel et al. (2010). We included RRMSE to measure the dis-
tance between simulated and measured results and r2 to quantify
the correlation between simulated and measured data. Both are
basic statistics used by all scientific disciplines. To quantify the
uncertainty of either measured or simulated results, we used the
coefficients of variation (CV), also known as relative standard de-
viation (standard deviation/mean of a distribution), which mea-
sures the dispersion of a distribution of a variable.
s with simulation CV of 0.075 for one treatment across four years. WSF1, WSF2, and
r each treatment (Trt-1 to Trt-6), L¼ 4 and Ni ¼ 4; for Trt-All, L¼ 24, Ni¼ 4.

erimental Uncertainty only Experimental and Simulation Uncertainty

F1-value p-value d2-index F2-value p-value

2.576 <0.001 0.889 1.291 0.0028
0.867 0.74 0.969 0.415 1.00
0.833 0.80 0.976 0.389 1.00
2.351 <0.001 0.916 1.068 0.24
2.078 <0.001 0.942 0.902 0.86
2.114 <0.001 0.906 1.008 0.46
0.586 0.99 0.981 0.279 1.00

1.117 0.31 0.961 0.503 1.00
1.211 0.20 0.960 0.544 1.00
1.091 0.35 0.960 0.505 1.00
1.236 0.17 0.949 0.589 1.00
2.334 <0.001 0.878 1.204 0.021
4.446 <0.001 0.755 2.409 <0.001
0.802 0.84 0.970 0.377 1.00

1.041 0.43 0.963 0.497 1.00
1.289 0.13 0.962 0.576 1.00
0.961 0.58 0.971 0.435 1.00
0.709 0.94 0.975 0.331 1.00
2.111 <0.001 0.894 1.085 0.19
4.384 <0.001 0.807 2.277 <0.001
0.683 0.96 0.978 0.316 1.00
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Fig. 1. Regression analysis of predicted biomass and yield with optimized cultivar
parameters from Trt-1 and Trt-2 for WSF1 (see Tables 4 and 5).
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3. Results and discussion

3.1. Optimized crop cultivar parameters

Calibrated crop cultivar parameters varied for each subset of
data used for optimization (Table 2). Among the six treatments
(across four years), P1 (thermal time from seedling emergence to
end of juvenile phase) had the least CV, followed by PHINT (thermal
time required for a leaf tip to emerge) and P5 (thermal time from
silking to physiological maturity). P2 (Day length sensitivity coef-
ficient) had the highest CV. G2 (Potential kernel number per plant)
and G3 (Potential kernel growth rate) were closely related in yield
formation. As a result, G2 and G3 also had high CV among the six
irrigation treatments (Table 2). In addition, we noticed smaller CV
for WSF3 and highest CV for WSF1. When fitting all the treatments
in one year, similar trends in CV among years were observed with
lowest CVs for P1, PHINT, and P5, which defines crop phenology.
However, there were no obvious trends in CV of fitted parameters
among the three water stress functions (Table 3). Except for P1 and
P2, all the other parameters had reached the upper boundary for
some optimization scenarios, which suggests that the fitted pa-
rameters may not be reliable in these cases. Except for P2, the CV
among treatments (Trt-1 to Trt-6, Table 2) was smaller than that
among years (Year-2008 to Year-2011, Table 3), which suggests it
may be better to fit a treatment across years than to fit all
treatments in one year as far as parameter stability concerns.
Regardless of water stress functions used, fitting all the datasets
derived the most reliable model parameters, which suggests that it
is best to use all data from one study for model calibration (Ma
et al., 2012b).

3.2. Statistics of prediction after calibration using one treatment
across four years

After calibrating with one treatment across four years, biomass
was generally better simulated than yield based on statistics given
in Tables 4 and 5. All r2s for predictionwere greater than 0.83 for all
treatments and all water stress functions (Tables 4 and 5). A ma-
jority of d-index values were greater than 0.7, which would be
‘satisfactory’ according to Saseendran et al. (2010) and Ma et al.
(2011). RRMSEs range from 7 to 11% for biomass prediction and 7
to 18% for yield prediction. Although these statistics are all
acceptable (Ma et al., 2011), they cannot be used to statistically
discriminate among the optimization options. In addition, they did
not consider experimental uncertainty nor simulation uncertainty.
By considering experimental uncertainty and using the d1-index
from Harmel and Smith (2007), we found an increase in the in-
dex values for all the treatments and water stress functions but
could not statistically determine which treatment or which water
stress functions provided the best biomass and yield prediction.
The d1-index showed the exact same trends for predicted biomass
and yield as the d-index. To investigate the effects of simulation
uncertainty on model performance, we used CV of 0.075 as simu-
lation uncertainty in this study, which is close to the average CV of
experimental uncertainty of yield and biomass. This CV for simu-
lation uncertainty was also reasonable according to Ma et al. (2016)
who found that the maximum simulation uncertainty had a CV of
0.07 for both yield and biomass due to spatial variability in soil field
capacity (model input data). In addition, if we lumped all the
simulation results together in this study from both water stress
functions (model structure uncertainty) and calibration datasets
(parameterization uncertainty), we obtained a CV of 0.065 for
biomass and a CV of 0.107 for yield. Given all the three uncertainties
in model simulation, using a CV of 0.075 for our study was
reasonable. As a result, if we considered both experimental un-
certainty and simulation uncertainty having the same CV of 0.075,
the d2-index of Harmel et al. (2010) provided even high index
values but with the same trends in model performance among
treatments and water stress functions as d-index and d1-index,
except for no significant differences among water stress functions
for biomass prediction. Thus, no statistical power was added to
differentiate the various optimization options.

Therefore, we evaluated the F-test from Ma et al. (2012a) (F1 in
Tables 4 and 5). For WSF1, the F-test showed significant differences
between experimental and simulated biomass for Trt-1 and Trt-4
when only experimental uncertainties were considered (F1).
However, these differences became insignificant when both
experimental and simulation uncertainties were taken into account
(F2 in Table 4). For yield prediction, only Trt-2 and Trt-3 provided
good prediction at significance level of 0.05 when experimental
uncertainty was considered. After considering simulation uncer-
tainty, Trt-1 still did not provide significantly good prediction of
yield (p< 0.01, Table 5). Thus, using only full irrigation treatments
for model calibration may not always be the best strategy. Com-
parisons should be made between water-deficit treatments and
well-watered treatments (Boote,1999) to improvemodel responses
to water deficits. For WSF2, only Trt-1 and Trt-5 showed signifi-
cantly satisfactory prediction of biomass with only experimental
uncertainties considered (p> 0.05, Table 4), but all treatments
provided good prediction of biomass after considering both



Fig. 2. Experimental and simulated biomass from Trt-1 and Trt-2 optimized cultivars for WSF1. Standard deviation (SD) of simulation was calculated based on a CV (coefficient of
variation) of 0.075, and the average CV of experimental uncertainty (See Table 4). The vertical bars and shaded areas are ±1 SD around the mean for experimental and simulation
results, respectively.
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experimental and simulation uncertainties (p> 0.05). For yield,
regardless of experimental or simulation uncertainties, Trt-5 and
Trt-6 did not provide statistically satisfactory yield prediction
(p< 0.05, Table 5). For WSF3, Trt-1, Trt-2, and Trt-6 did not provide
good biomass prediction with only experimental uncertainty
(p< 0.05), but showed good prediction when both experimental
and simulation uncertainties were considered (p> 0.5, Table 4).
Yield prediction showed the same trends as in the cases of WSF1,
except for satisfactory prediction for Trt-5 after considering
simulation uncertainty.
Thus, the modified F-tests were able to discern the goodness of

model prediction among different optimization options and stress
functions. Based on RRMSE and d-index, Saseendran et al. (2014)
concluded that WSF2 and WSF3 were superior to WSF1 based on
simulated biomass, yield, and leaf area index after manually cali-
brating for Trt-1 using WSF1. In our study, we found that if both
experimental and simulation uncertainties were taken into ac-
count, there was no significant difference among the three water



Fig. 3. Experimental and simulated yield from Trt-1 and Trt-2 optimized cultivars for WSF1. Standard deviation (SD) of simulation was calculated based on a CV (coefficient of
variation) of 0.075, and the average CV of experimental uncertainty (See Table 5). The vertical bars and shaded areas are ±1 SD around the mean for experimental and simulation
results, respectively.
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stress functions. Among the treatments used for model calibration,
Trt-2 and Trt-3 of WSF1, Trt-1 of WSF2, and Trt-3 and Trt-4 of WSF3
provided statistically good prediction for both biomass and yield
when only experimental uncertainties were considered based on
the F-tests (p> 0.1, Tables 4 and 5). When both experimental and
simulation uncertainties were considered, only Trt-1 ofWSF1, Trt-5
and Trt-6 of WSF2, and Trt-6 of WSF3 did not satisfy goodness of
prediction for yield (p< 0.05, Tables 4 and 5). When all the treat-
ments were used for model calibration, there was no difference in
goodness of yield and biomass prediction among the three water
stress functions statistically (p> 0.305) (Tables 4 and 5).
To show that the F-test was better than the traditional statistics,

we plotted the simulated and observed biomass predicted with
cultivar parameters from Trt-1 and Trt-2 for WSF1 (Fig. 1). As
shown in Table 4, Trt-1 predicted biomass had a higher r2 than Trt-2
predicted biomass, although all other traditional statistics (d-index
and RRMSE) were better for Trt-2 prediction. Thus, multiple
traditional statistics should be used to evaluate model performance
(Moriasi et al., 2007). However, the F-test not only showed better
performance of Trt-2 than Trt-1 but also provided a significance



Table 6
F-test, d-index, RRMSE (%), and r2 for predicting biomass for the three water stress functions with simulation CV of 0.075 for all treatments in one year. WSF1, WSF2, andWSF3
are water stress functions (WSF) used in RZWQM. CV is coefficient of variation. For each year, L¼ 6, Ni¼ 4.

WSF Calibration
Year

d-index r2 RRMSE Experimental Uncertainty only Experimental and Simulation Uncertainty

d1-index F1-value p-value d2-index F2-value p-value

WSF1 Year-2008 0.773 0.828 11.90 0.801 2.005 0.001 0.941 0.888 0.897
Year-2009 0.632 0.841 17.33 0.656 4.250 <0.001 0.788 2.335 <0.001
Year-2010 0.690 0.881 13.82 0.721 2.704 <0.001 0.860 1.438 <0.001
Year-2011 0.823 0.889 9.37 0.857 1.242 0.167 0.960 0.558 1.000

WSF2 Year-2008 0.783 0.914 9.04 0.824 1.156 0.261 0.937 0.548 1.000
Year-2009 0.681 0.838 12.05 0.889 2.055 <0.001 0.889 1.037 0.346
Year-2010 0.732 0.836 11.88 0.773 1.999 0.001 0.886 1.028 0.379
Year-2011 0.784 0.872 8.88 0.831 1.117 0.313 0.940 0.546 1.000

WSF3 Year-2008 0.731 0.821 11.14 0.771 1.757 0.006 0.918 0.808 0.988
Year-2009 0.741 0.881 10.19 0.789 1.470 0.044 0.922 0.733 0.999
Year-2010 0.632 0.828 15.32 0.667 3.323 <0.001 0.821 1.792 <0.001
Year-2011 0.757 0.824 10.41 0.800 1.533 0.029 0.910 0.733 0.999

Table 7
F-test, d-index, RRMSE (%), and r2 for predicting yield for the threewater stress functions with simulation CV of 0.075 for all treatments in one year. WSF1, WSF2, andWSF3 are
water stress functions used in RZWQM. CV is coefficient of variation. For each year, L¼ 6, Ni¼ 4.

WSF Calibration
Year

d-index r2 RRMSE Experimental Uncertainty only Experimental and Simulation Uncertainty

d1-index F1-value p-value d2-index F2-value p-value

WSF1 Year-2008 0.727 0.742 17.31 0.755 4.224 <0.001 0.827 2.010 <0.001
Year-2009 0.475 0.564 32.97 0.485 15.312 <0.001 0.511 9.437 <0.001
Year-2010 0.780 0.872 12.75 0.811 2.292 <0.001 0.872 1.578 0.056
Year-2011 0.822 0.937 9.71 0.858 1.327 0.104 0.968 0.586 1.000

WSF2 Year-2008 0.721 0.754 14.79 0.761 3.083 <0.001 0.845 1.590 <0.001
Year-2009 0.509 0.510 27.07 0.532 10.326 <0.001 0.603 6.076 <0.001
Year-2010 0.873 0.936 6.44 0.922 0.585 0.993 0.981 0.279 1.000
Year-2011 0.837 0.919 8.06 0.880 0.916 0.659 0.972 0.418 1.000

WSF3 Year-2008 0.789 0.888 9.48 0.835 1.267 0.146 0.937 0.611 1.000
Year-2009 0.653 0.647 214 0.680 5.715 <0.001 0.755 3.114 <0.001
Year-2010 0.785 0.818 11.57 0.828 1.885 0.003 0.901 0.925 0.796
Year-2011 0.721 0.857 13.84 0.752 2.670 <0.001 0.917 1.166 0.049

Table 8
Optimized crop parameters fitted for two treatments across four years. WSF1, WSF2, andWSF3 are water stress functions (WSF) used in RZWQM. CV is coefficient of variation.

Parameter Name and (Ranges, initial values) for
PEST optimization

WSF CV Parameter values fitted from two treatments across 4 years

Trt-1þTrt-2 Trt-1þTrt-3 Trt-1þTrt-4 Trt-1þTrt-5 Trt-1þTrt-6

P1 - Degree days (base temperature of 8 �C)
from seedling emergence to end of juvenile
phase (thermal degree days) (100e450, 250).

WSF1 0.027 258.1 258.3 259.0 256.7 242.9
WSF2 0.046 249.5 251.6 253.1 228.3 234.3
WSF3 0.048 245.4 250.7 226.6 225.8 244.4

P2 - Day length sensitivity coefficient [the
extent (days) that development is delayed for
each hour increase in photoperiod above the
longest photoperiod (12.5 h) at which
development proceeds at maximum rate] (0
e1, 0.2).

WSF1 0.635 0.236 0.377 0.176 0.017 0.194
WSF2 0.334 0.075 0.203 0.181 0.226 0.185
WSF3 0.635 0.182 0.189 0.022 0.142 0.057

P5 - Degree days (base temperature of 8 �C)
from silking to physiological maturity
(thermal degree days) (500e1000, 600)

WSF1 0.085 721.2 717.8 587.5 729.7 683.0
WSF2 0.055 707.3 698.0 700.2 794.2 730.6
WSF3 0.107 692.6 689.4 860.2 790.7 679.4

G2 - Potential kernel number per plant (440
e1000, 900)

WSF1 0.270 985.0 974.0 863.5 440.0 843.7
WSF2 0.099 756.0 977.9 939.2 971.6 911.6
WSF3 0.252 966.3 1000.0 793.8 942.0 486.1

G3 - Potential kernel growth rate (mg/(kernel d)
(5e16, 6)

WSF1 0.300 6.31 6.43 7.59 12.26 7.88
WSF2 0.147 7.93 6.33 6.49 5.31 6.15
WSF3 0.366 6.56 6.36 5.93 5.60 12.03

PHINT - Degree days required for a leaf tip to
emerge (thermal degree days) (38e55, 50)

WSF1 0.080 45.7 43.8 50.4 46.3 53.2
WSF2 0.020 49.2 48.3 48.7 50.9 49.6
WSF3 0.043 48.1 50.1 47.0 52.2 51.5
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Table 9
F-test, d-index, RRMSE (%), and r2 for predicting biomass for the threewater stress functions with simulation CV of 0.075 for two treatments across four years.WSF1,WSF2, and
WSF3 are water stress functions (WSF) used in RZWQM. CV is coefficient of variation. For each calibration, L¼ 8, Ni¼ 4.

WSF Calibration
Treatment

d-index r2 RRMSE Experimental Uncertainty only Experimental and Simulation Uncertainty

d1-index F1-value p-value d2-index F2-value p-value

WSF1 Trt-1þTrt-2 0.816 0.911 0.085 0.862 1.025 0.459 0.950 0.508 1.000
Trt-1þTrt-3 0.835 0.898 0.075 0.877 0.796 0.853 0.968 0.381 1.000
Trt-1þTrt-4 0.791 0.889 0.093 0.839 1.236 0.173 0.939 0.616 1.000
Trt-1þTrt-5 0.799 0.908 0.089 0.846 1.136 0.286 0.944 0.569 1.000
Trt-1þTrt-6 0.745 0.911 0.118 0.786 1.986 0.001 0.894 1.034 0.357

WSF2 Trt-1þTrt-2 0.768 0.889 0.094 0.809 1.254 0.156 0.940 0.586 1.000
Trt-1þTrt-3 0.757 0.876 0.101 0.795 1.441 0.052 0.929 0.668 1.000
Trt-1þTrt-4 0.759 0.879 0.099 0.798 1.402 0.066 0.930 0.651 1.000
Trt-1þTrt-5 0.782 0.860 0.089 0.826 1.117 0.313 0.947 0.538 1.000
Trt-1þTrt-6 0.799 0.919 0.080 0.845 0.914 0.662 0.954 0.439 1.000

WSF3 Trt-1þTrt-2 0.794 0.888 0.085 0.838 1.022 0.464 0.954 0.482 1.000
Trt-1þTrt-3 0.774 0.859 0.095 0.819 1.269 0.145 0.936 0.593 1.000
Trt-1þTrt-4 0.801 0.865 0.088 0.847 1.108 0.325 0.939 0.544 1.000
Trt-1þTrt-5 0.809 0.890 0.085 0.854 1.022 0.465 0.942 0.505 1.000
Trt-1þTrt-6 0.790 0.884 0.086 0.838 1.058 0.402 0.946 0.501 1.000
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level test (p¼ 0.47 for Trt-2 and p¼ 0.003 for Trt-1). As shown in
Fig. 1, Trt-2 predictions were closer to the 1:1 line than Trt-1 pre-
dictions. In addition, the liner regression of Trt-1 data points failed
the constant variance test (p¼ 0.016), which suggested a non-zero
residual for the linear regression. For yield, Trt-2 predicted higher r2

than Trt-1, which was in agreement with the F-test (Fig. 1; Table 5).
Fig. 2 showed the same biomass data but plotted for treatment by
year to visualize the differences between Trt-1 and Trt-2 predicted
biomass. Trt-1 under-predicted biomass for 2008, 2009, and 2011
considerably, whereas Trt-2 under predicted biomass for 2008 but
over predicted biomass in 2010. The under prediction of biomass by
Trt-1 was so severe that both experimental and simulation un-
certainties had to be considered to make a statement that simu-
lated and observed results were not significantly different. For
yield, Trt-1 under-predicted yield in 2010 and 2011 compared to
Trt-2 (Fig. 3) and the simulation results were significantly different
from observed yield even if both experimental and simulation
uncertainties were considered (p¼ 0.0028, Table 5).

3.3. Statistics of prediction after calibration using all treatments in
one year

Ma et al. (2012b) suggested calibrating a model with all
Table 10
F-test, d-index, RRMSE (%), and r2 for predicting yield for the three water stress functions
WSF3 are water stress functions (WSF) used in RZWQM. CV is coefficient of variation. Fo

WSF Calibration
Treatment

d-index r2 RRMSE Experim

d1-index

WSF1 Trt-1þTrt-2 0.834 0.938 0.089 0.870
Trt-1þTrt-3 0.878 0.951 0.068 0.920
Trt-1þTrt-4 0.865 0.945 0.077 0.903
Trt-1þTrt-5 0.816 0.927 0.092 0.855
Trt-1þTrt-6 0.812 0.931 0.101 0.848

WSF2 Trt-1þTrt-2 0.834 0.939 0.087 0.877
Trt-1þTrt-3 0.826 0.956 0.085 0.874
Trt-1þTrt-4 0.832 0.949 0.084 0.879
Trt-1þTrt-5 0.854 0.913 0.078 0.900
Trt-1þTrt-6 0.851 0.922 0.077 0.894

WSF3 Trt-1þTrt-2 0.846 0.935 0.075 0.892
Trt-1þTrt-3 0.852 0.952 0.077 0.893
Trt-1þTrt-4 0.843 0.886 0.087 0.886
Trt-1þTrt-5 0.867 0.921 0.072 0.909
Trt-1þTrt-6 0.816 0.939 0.086 0.861
treatments in one year so that the treatment effects can be taken
into account in model optimization. However, in this study we
found the opposite. As shown in Tables 6 and 7, all statistics were
inferior to those obtained when calibrating the model with one
treatment from four years. Similar to treatment options in model
calibration, it was not possible to discriminate among the calibra-
tion options (Year-2008, Year-2009, Year-2010, and Year 2011) us-
ing the d-index, r2, or RRMSE, although a combination of these
statistics might be helpful (Ma et al., 2011; Moriasi et al., 2007).
However, we did see Year-2011 provided statistically good predic-
tion of both biomass and yield for WSF1 and WSF2 based on the F-
tests when experimental uncertainties were considered. When
both experimental and simulation uncertainties were taken into
account, Year-2011 of WSF1, Year-2010 and Year-2011 of WSF2, and
Year-2008 and Year-2011 ofWSF3 provided statistically satisfactory
goodness of model predictions (Tables 6 and 7).

Looking at the yield and biomass variations among the years, we
found that Year-2011 had themost differences between highest and
lowest treatments for both biomass (10235e22721 kg ha�1) and
yield (3434e11809 kg ha�1). This may be the reason that calibrated
parameters from Year-2011 provided the best goodness of predic-
tion because the calibrated cultivar parameters had compensated
for the water stress endured by plants. Therefore, when multiple
with simulation CV of 0.075 for two treatments across four years. WSF1, WSF2, and
r each calibration, L¼ 8, Ni¼ 4.

ental Uncertainty only Experimental and Simulation Uncertainty

F1-value p-value d2-index F2-value p-value

1.121 0.307 0.966 0.547 1.000
0.649 0.975 0.975 0.308 1.000
0.845 0.779 0.967 0.400 1.000
1.191 0.218 0.953 0.589 1.000
1.438 0.053 0.946 0.708 1.000

1.068 0.386 0.964 0.486 1.000
1.014 0.479 0.965 0.464 1.000
0.982 0.536 0.965 0.453 1.000
0.855 0.764 0.970 0.400 1.000
0.847 0.777 0.966 0.402 1.000

0.800 0.846 0.974 0.367 1.000
0.836 0.794 0.973 0.381 1.000
1.079 0.369 0.958 0.519 1.000
0.720 0.993 0.978 0.344 1.000
1.056 0.406 0.970 0.475 1.000
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treatments in one year were used for model calibration, selecting
the one showing the most treatment effects was warranted.

3.4. Statistics of prediction after calibration with two treatments in
all years simultaneously

To evaluate model robustness when two treatments from all
four years were used for calibration simultaneously, we selected
Trt-1 plus another treatment. As shown in Table 8, the obtained
cultivar parameters had a lower CV compared to the previous two
optimization options. Except for G2 underWSF3, all the parameters
were within their respective specified ranges. Goodness of pre-
diction of these parameters was much improved compared to those
obtained from optimizing either one treatment across all years or
all treatments in one year (Tables 9 and 10). The improvement
seems to be more obvious for yield than for biomass for all statis-
tics. When only experimental uncertainty was considered, there
were no significant differences between predicted and observed
biomass and yield regardless of water stress functions used
(p > 0.05), except for biomass prediction under WSF1 with pa-
rameters from Trt-1þTrt-6 (Table 9). When both experimental and
simulation uncertainties were taken into account, all predictions
were acceptable, which suggests the three water stress functions
and the five optimization options were equally effective. Therefore,
the conclusion on water stress functions (Saseendran et al., 2014)
may not be valid when more rigorous statistics, such as the
modified F-test, were used. The results also showed that model
calibration would be more stable and reliable if two or more
treatments were used in model calibration (Fensterseifer et al.,
2017) (see Table 10).

4. Conclusion

In this study, a modified F-test was developed to account for
experimental and simulation uncertainty. The experimental un-
certainty was generally taken from measurement uncertainty in
data used for calibration and evaluation. Simulation uncertainties
might be from model structure, model inputs, as well as model
parameters. An irrigation study was used to exemplify these
traditional and enhanced goodness of fit statistics and their appli-
cation for objectively differentiating goodness of model prediction.
Based on the results, goodness of model prediction heavily depends
on which sub-datasets were used for model calibration and which
outputs were compared (yield or biomass). When taking into ac-
count both experimental and simulation uncertainties, biomass
was well simulated regardless of treatments and water stress
functions used for calibration. In general, biomass was better pre-
dicted than yield. Using one treatment across years for model
calibration seemed to be superior to calibration using all treat-
ments in one year, especially when both experimental and simu-
lation uncertainties were taken into account. It is recommended to
use two or more treatments for model calibration to obtain most
reliable model parameters and better prediction.

We found that accounting for uncertainty in both experimental
and simulation results increased the d-index for all optimization
options and water stress functions. But such an increase could not
be used to discern the goodness of model prediction. The power of
F-test depends on the coefficient of variance (CV) of both experi-
mental and simulation results. If the CV of simulation uncertainty is
smaller than 0.075, the modified F-test will reject more simulation
results and show more significant differences between simulated
and observed results. In addition, if other model outputs (e.g., leaf
area index, soil water content, etc.) are used in the statistics, the
conclusion may change. In the paper, we analyzed statistical sig-
nificance for each yield and biomass separately, but an overall
model performance may be developed by pooling all the outputs
together in the statistics. In conclusion, due to its ability to form a
statistical significance test, the modified F-test should be recom-
mended for more rigorous model evaluation than the traditional
simple statistics when experimental uncertainty and/or simulation
uncertainty are available. By properly calibrating the model, all the
three water stress functions provided similar goodness of predic-
tion for yield and biomass in this study. Where there were more
treatment-year data available, using more data for calibration
would increase model performance and predictability.
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